L’avenir de la créativité sera-t-il artificiel ? 06.2021

Ninon Devis

Article de vulgarisation pour le journal en ligne The Conversation

Au sein de nos sociétés profondément impactées par les avancées technologiques, il semble que l’espace créatif tende également à se développer en harmonie avec ces progrès. Plus particulièrement, l’exploitation de l’intelligence artificielle s’intensifie et son utilisation s’immisce dans toutes les sphères artistiques. Et pourtant, bien que l’IA soit par définition un algorithme capable de résoudre des tâches relevant de l’intelligence humaine, le succès de son utilisation – quel que soit son domaine d’étude – repose sur une formalisation rigoureuse du problème traité ainsi qu’une définition claire des objectifs.

À ce titre, il semble légitime de se demander dans quelle mesure il est possible de conjuguer créativité et intelligence artificielle. Peut-on élaborer une forme de créativité artificielle ? Si oui, quelles en sont ses limites ? Face à l’automatisation massive qui n’épargne aucun domaine des arts, quelle place conserve l’originalité ? Dans le secteur de la musique, quels outils futurs reposant sur l’IA peut-on concevoir ? Quels pourraient alors être les instruments de demain ?


L’avenir de la créativité sera-t-il artificiel

Creativity in the era of artificial intelligence 08.2020

Philippe Esling, Ninon Devis

Creativity is a deeply debated topic, as this concept is arguably quintessential to our humanity. Across different epochs, it has been infused with an extensive variety of meanings relevant to that era. Along these, the evolution of technology have provided a plurality of novel tools for creative purposes. Recently, the advent of Artificial Intelligence (AI), through deep learning approaches, have seen proficient successes across various applications. The use of such technologies for creativity appear in a natural continuity to the artistic trend of this century. However, the aura of a technological artefact labeled as intelligent has unleashed passionate and somewhat unhinged debates on its implication for creative endeavors. In this paper, we aim to provide a new perspective on the question of creativity at the era of AI, by blurring the frontier between social and computational sciences. To do so, we rely on reflections from social science studies of creativity to view how current AI would be considered through this lens. As creativity is a highly context-prone concept, we underline the limits and deficiencies of current AI, requiring to move towards artificial creativity. We argue that the objective of trying to purely mimic human creative traits towards a self-contained ex-nihilo generative machine would be highly counterproductive, putting us at risk of not harnessing the almost unlimited possibilities offered by the sheer computational power of artificial agents.

Creativity in the era of artificial intelligence

Diet deep generative audio models with structured lottery

Philippe Esling, Ninon Devis, Adrien Bitton, Antoine Caillon, Axel Chemla–Romeu-Santos, Constance Douwes

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8-12, 2020

Deep learning models have provided extremely successful solutions in most audio application fields. However, the high accuracy of these models comes at the expense of a tremendous computation cost. This aspect is almost always overlooked in evaluating the quality of proposed models. However, models should not be evaluated without taking into account their complexity. This aspect is especially critical in audio applications, which heavily relies on specialized embedded hardware with real-time constraints. In this paper, we build on recent observations that deep models are highly overparameterized, by studying the lottery ticket hypothesis on deep generative audio models. This hypothesis states that extremely efficient small sub-networks exist in deep models and would provide higher accuracy than larger models if trained in isolation. However, lottery tickets are found by relying on unstructured masking, which means that resulting models do not provide any gain in either disk size or inference time. Instead, we develop here a method aimed at performing structured trimming. We show that this requires to rely on global selection and introduce a specific criterion based on mutual information. First, we confirm the surprising result that smaller models provide higher accuracy than their large counterparts. We further show that we can remove up to 95% of the model weights without significant degradation in accuracy. Hence, we can obtain very light models for generative audio across popular methods such as Wavenet, SING or DDSP, that are up to 100 times smaller with commensurate accuracy. We study the theoretical bounds for embedding these models on Raspberry Pi and Arduino, and show that we can obtain generative models on CPU with equivalent quality as large GPU models. Finally, we discuss the possibility of implementing deep generative audio models on embedded platforms.

Diet deep generative audio models with structured lottery

Ultra-light deep MIR by trimming lottery tickets

Philippe Esling, Theis Bazin, Adrien Bitton, Tristan Carsault, Ninon Devis

21st International Society for Music Information Retrieval Conference 11-15 October 2020, Montreal, Canada

Current state-of-the-art results in Music Information Retrieval are largely dominated by deep learning approaches. These provide unprecedented accuracy across all tasks. However, the consistently overlooked downside of these models is their stunningly massive complexity, which seems concomitantly crucial to their success. In this paper, we address this issue by proposing a model pruning method based on the lottery ticket hypothesis. We modify the original approach to allow for explicitly removing parameters, through structured trimming of entire units, instead of simply masking individual weights. This leads to models which are effectively lighter in terms of size, memory and number of operations. We show that our proposal can remove up to 90% of the model parameters without loss of accuracy, leading to ultra-light deep MIR models. We confirm the surprising result that, at smaller compression ratios (removing up to 85% of a network), lighter models consistently outperform their heavier counterparts. We exhibit these results on a large array of MIR tasks including audio classification, pitch recognition, chord extraction, drum transcription and onset estimation. The resulting ultra-light deep learning models for MIR can run on CPU, and can even fit on embedded devices with minimal degradation of accuracy.

Ultra-light deep MIR by trimming lottery tickets