A Pd’s message-system

Non-audio-data are distributed via a message-system. Each message consists
of a “selector” and a list of atoms.

A.1 atoms

There are three kinds of atoms:
e A FLOAT: a numerical value (floating point)
e A SYMBOL: a symbolic value (string)
e A POINTER: a pointer

Numerical values are always floating point-values (t_float), even if they
could be displayed as integer values.

Each symbol is stored in a lookup-table for reasons of performance. The
command gensym looks up a string in the lookup-table and returns the ad-
dress of the symbol. If the string is not yet to be found in the table, a new
symbol is added.

Atoms of type A POINTER are not very important (for simple exter-
nals).

The type of an atom a is stored in the structure-element a.a_type.

A.2 selectors

The selector is a symbol that defines the type of a message. There are five
predefined selectors:

e “bang” labels a trigger event. A “bang’-message consists only of the
selector and contains no lists of atoms.

e “float” labels a numerical value. The list of a “float”-Message contains
one single atom of type A FLOAT

e “symbol” labels a symbolic value. The list of a “symbol”-Message con-
tains one single atom of type A SYMBOL

e “pointer” labels a pointer value. The list of a “pointer’-Message con-
tains one single atom of type A POINTER

e “list” labels a list of one or more atoms of arbitrary type.

27

Since the symbols for these selectors are used quite often, their address
in the lookup-table can be queried directly, without having to use gensym:

selector lookup-routine lookup-address
bang gensym("bang") &s_bang
float gensym("float") &s_float
symbol gensym("symbol") | &s_symbol
pointer gensym('"pointer") | &s_pointer
list gensym("1list") &s_list

— (signal) || gensym("signal") | &s_symbol

Other selectors can be used as well. The receiving class has to provide
a method for a specifique selector or for “anything”, which is any arbitrary
selector.

Messages that have no explicit selector and start with a numerical value,
are recognised automatically either as “float”-message (only one atom) or as
“list”-message (several atoms).

For example, messages “12.429” and “float 12.429” are identical. Like-
wise, the messages “1ist 1 for you” is identical to “1 for you”.

B Pd-types

Since Pd is used on several platforms, many ordinary types of variables, like
int, are re-defined. To write portable code, it is reasonable to use types
provided by Pd.
Apart from this there are many predefined types, that should make the
life of the programmer simpler.
Generally, Pd-types start with t_.
Pd-type ‘ description

t_atom atom

t_float floating point value

t_symbol symbol

t_gpointer | pointer (to graphical objects)

t_int integer value

t_signal structure of a signal

t_sample audio signal-value (floating point)

t_outlet outlet of an object

t_inlet inlet of an object
t_object object-interna
t_class a Pd-class

t_method | class-method
t_newmethod | pointer to a constructor (new-routine)

28

C 1important functions in “m_pd.h”

C.1 functions: atoms
C.1.1 SETFLOAT
SETFLOAT (atom, f)

This macro sets the type of atom to A_FLOAT and stores the numerical value
f in this atom.

C.1.2 SETSYMBOL
SETSYMBOL (atom, s)

This macro sets the type of atom to A_SYMBOL and stores the symbolic pointer
s in this atom.

C.1.3 SETPOINTER

SETPOINTER (atom, pt)

This macro sets the type of atom to A_POINTER and stores the pointer pt in
this atom.

C.1.4 atom getfloat

t_float atom_getfloat(t_atom *a);

If the type of the atom a is A_FLOAT, the numerical value of this atom else
“0.0” is returned.

C.1.5 atom getfloatarg

t_float atom_getfloatarg(int which, int argc, t_atom *argv)

If the type of the atom — that is found at in the atom-list argv with the
length argc at the place which — is A_FLOAT, the numerical value of this
atom else “0.0” is returned.

C.1.6 atom getint

t_int atom_getint(t_atom *a);

If the type of the atom a is A_FLOAT, its numerical value is returned as integer
else “0” is returned.

29

C.1.7 atom _getsymbol

t_symbol atom_getsymbol(t_atom *a);

If the type of the atom a is A_SYMBOL, a pointer to this symbol is returned,
else a null-pointer “0” is returned.
C.1.8 atom gensym

t_symbol *atom_gensym(t_atom *a);

If the type of the atom a is A_SYMBOL, a pointer to this symbol is returned.

Atoms of a different type, are “reasonably” converted into a string. This
string is — on demand — inserted into the symbol-table. A pointer to this
symbol is returned.

C.1.9 atom _string

void atom_string(t_atom *a, char *buf, unsigned int bufsize);

Converts an atom a into a C-string buf. The memory to this char-Buffer has
to be reserved manually and its length has to be declared in bufsize.

C.1.10 gensym

t_symbol *gensym(char *s);

Checks, whether the C-string *s has already been inserted into the symbol-
table. If no entry exists, it is created. A pointer to the symbol is returned.

C.2 functions: classes
C.2.1 class_new

t_class *class_new(t_symbol *name,
t_newmethod newmethod, t_method freemethod,
size_t size, int flags,
t_atomtype argl, ...);

Generates a class with the symbolic name name. newmethod is the constructor
that creates an instance of the class and returns a pointer to this instance.

If memory is reserved dynamically, this memory has to be freed by the
destructor-method freemethod (without any return argument), when the
object is destroyed.

30

size is the static size of the class-data space, that is returned by sizeof (t_mydata).
flags define the presentation of the graphical object. A (more or less
arbitrary) combination of following objects is possible:

flag description

CLASS_DEFAULT a normal object with one inlet

CLASS_PD object (without graphical presentation)
CLASS_GOBJ pure graphical object (like arrays, graphs,...)
CLASS_PATCHABLE | a normal object (with one inlet)
CLASS_NOINLET the default inlet is suppressed

Flags the description of which is printed in ¢talic are of small importance
for writing externals.

The remaining arguments argl, . .. define the types of object-arguments
passed at the creation of a class-object. A maximum of six type checked argu-
ments can be passed to an object. The list of argument-types are terminated
by “077.

Possible types of arguments are:

A_DEFFLOAT | a numerical value
A_DEFSYMBOL | a symbolical value
A_GIMME a list of atoms of arbitrary length and types

If more than six arguments are to be passed, A_GIMME has to be used and

a manual type-check has to be made.

C.2.2 class addmethod

void class_addmethod(t_class *c, t_method fn, t_symbol *sel,
t_atomtype argl, ...);

Adds a method fn for a selector sel to a class c.

The remaining arguments argl, ... define the types of the list of atoms
that follow the selector. A maximum of six type-checked arguments can be
passed. If more than six arguments are to be passed, A_GIMME has to be used
and a manual type-check has to be made.

The list of arguments is terminated by “0”.

Possible types of arguments are:

A_DEFFLOAT | a numerical value

A_DEFSYMBOL | a symbolical value

A_POINTER a pointer

A_GIMME a list of atoms of arbitrary length and types

C.2.3 class addbang

void class_addbang(t_class *c, t_method fn);

31

Adds a method fn for “bang’-messages to the class c.
The argument of the “bang”method is a pointer to the class-data space:
void my_bang_method(t_mydata *x);

C.2.4 class addfloat

void class_addfloat(t_class *c, t_method fn);

Adds a method fn for “float”™-messages to the class c.

The arguments of the “float”™method is a pointer to the class-data space
and a floating point-argument:

void my_float_method(t_mydata *x, t_floatarg f);

C.2.5 class addsymbol

void class_addsymbol(t_class *c, t_method fn);

Adds a method fn for “symbol”-messages to the class c.

The arguments of the “symbol”-method is a pointer to the class-data space
and a pointer to the passed symbol:

void my_symbol_method(t_mydata *x, t_symbol *s);

C.2.6 class addpointer

void class_addpointer(t_class *c, t_method fn);

Adds a method fn for “pointer”-messages to the class c.

The arguments of the “pointer™-method is a pointer to the class-data space
and a pointer to a pointer:

void my_pointer_method(t_mydata *x, t_gpointer *pt);

C.2.7 class addlist

void class_addlist(t_class *c, t_method fn);

Adds a method fn for “list”-messages to the class c.

The arguments of the “list”-method are — apart from a pointer to the
class-data space — a pointer to the selector-symbol (always &s_list), the
number of atoms and a pointer to the list of atoms:

void my_list_method(t_mydata *x,

t_symbol *s, int argc, t_atom *argv);

32

C.2.8 class addanything

void class_addanything(t_class *c, t_method fn);

Adds a method fn for an arbitrary message to the class c.

The arguments of the anything-method are — apart from a pointer to the
class-data space — a pointer to the selector-symbol, the number of atoms and
a pointer to the list of atoms:

void my_any_method(t_mydata *x,

t_symbol *s, int argc, t_atom *argv);

C.2.9 class addcreator

void class_addcreator (t_newmethod newmethod, t_symbol *s,
t_atomtype typel, ...);

Adds a creator-symbol s, alternative to the symbolic class name, to the
constructor newmethod. Thus, objects can be created either by their “real”
class name or an alias-name (p.e. an abbreviation, like the internal “float”
resp. “f”).

The “0”-terminated list of types corresponds to that of class_new.

C.2.10 class_sethelpsymbol

void class_sethelpsymbol(t_class *c, t_symbol *s);

If a Pd-object is right-clicked, a help-patch for the corresponding object
class can be opened. By default this is a patch with the symbolic class name
in the directory “doc/5.reference/”.

The name of the help-patch for the class that is pointed to by ¢ is changed
to the symbol s.

Therefore, several similar classes can share a single help-patch.

Path-information is relative to the default help path doc/5.reference/.

C.2.11 pd new

t_pd *pd_new(t_class *cls);

Generates a new instance of the class c¢ls and returns a pointer to this
instance.

33

C.3 functions: inlets and outlets

All routines for inlets and outlets need a reference to the object-interna of the
class-instance. When instantiating a new object, the necessary data space-
variable of the t_object-type is initialised. This variable has to be passed
as the owner-object to the various inlet- and outlet-routines.

C.3.1 inlet new

t_inlet *inlet_new(t_object *owner, t_pd *dest,
t_symbol *sl, t_symbol #*s2);

Generates an additional “active” inlet for the object that is pointed at by
owner. Generally, dest points at “owner.ob_pd”.

The selector s1 at the new inlet is substituted by the selector s2.

If a message with selector s1 appears at the new inlet, the class-method
for the selector s2 is called.

This means

e The substituting selector has to be declared by class_addmethod in
the setup-routine.

e [t is possible to simulate a certain right inlet, by sending a message
with this inlet’s selector to the leftmost inlet.
Using an empty symbol (gensym("")) as selector makes it impossible
to address a right inlet via the leftmost one.

e [t is not possible to add methods for more than one selector to a right
inlet. Particularly it is not possible to add a universal method for
arbitrary selectors to a right inlet.

C.3.2 floatinlet new
t_inlet *floatinlet_new(t_object *owner, t_float *fp);
Generates a new “passive” inlet for the object that is pointed at by owner.

This inlet enables numerical values to be written directly into the memory
fp, without calling a dedicated method.

34

C.3.3 symbolinlet new

t_inlet *symbolinlet_new(t_object *owner, t_symbol *x*sp);

Generates a new “passive” inlet for the object that is pointed at by owner.
This inlet enables symbolic values to be written directly into the memory
*sp, without calling a dedicated method.

C.3.4 pointerinlet new

t_inlet *pointerinlet_new(t_object *owner, t_gpointer *gp);

Generates a new “passive” inlet for the object that is pointed at by owner.
This inlet enables pointer to be written directly into the memory gp, without
calling a dedicated method.

C.3.5 outlet new
t_outlet *outlet_new(t_object *owner, t_symbol *s);
Generates a new outlet for the object that is pointed at by owner. The

Symbol s indicates the type of the outlet.
symbol ‘ symbol-address H outlet-type

“bang” | &s_bang message (bang)
“float” | &s_float message (float)
“symbol” | &s_symbol message (symbol)
“pointer” | &s_gpointer message (pointer)
“list” | &s_list message (list)

— 0 message
“signal” | &s_signal signal

There are no real differences between outlets of the various message-types.
At any rate, it makes code more easily readable, if the use of outlet is shown
at creation-time. For outlets for any messages a null-pointer is used. Signal-
outlet must be declared with &s_signal.

Variables if the type t_object provide pointer to one outlet. When-
ever a new outlet is generated, its address is stored in the object variable
(*owner) .ob_outlet.

If more than one message-outlet is needed, the outlet-pointers that are
returned by outlet_new have to be stored manually in the data space to
address the given outlets.

35

C.3.6 outlet bang

void outlet_bang(t_outlet *x);

Outputs a “bang’-message at the outlet specified by x.

C.3.7 outlet float

void outlet_float(t_outlet *x, t_float f);

Outputs a “float”™-message with the numeric value f at the outlet specified by
X.

C.3.8 outlet symbol

void outlet_symbol(t_outlet *x, t_symbol *s);

Outputs a “symbol’-message with the symbolic value s at the outlet specified
by x.

C.3.9 outlet pointer

void outlet_pointer(t_outlet *x, t_gpointer *gp);

Outputs a “pointer’-message with the pointer gp at the outlet specified by x.

C.3.10 outlet list

void outlet_list(t_outlet *x,
t_symbol *s, int argc, t_atom *argv);

Outputs a “list”-message at the outlet specified by x. The list contains argc
atoms. argv points to the first element of the atom-list.

Independent of the symbol s, the selector “list” will precede the list.

To make the code more readable, s should point to the symbol list (either
via gensym("1list") or via &s_list)

C.3.11 outlet anything

void outlet_anything(t_outlet *x,
t_symbol *s, int argc, t_atom *argv);

Outputs a message at the outlet specified by x.
The message-selector is specified with s. It is followed by argc atoms.
argv points to the first element of the atom-list.

36

C.4 functions: DSP

If a class should provide methods for digital signal-processing, a method for
the selector “dsp” (followed by no atoms) has to be added to this class

Whenever Pd’s audio engine is started, all objects that provide a “dsp”-
method are identified as instances of signal classes.

DSP-method
void my_dsp_method(t_mydata *x, t_signal **sp)

In the “dsp”™method a class method for signal-processing is added to the
DSP-tree by the function dsp_add.

Apart from the data space x of the object, an array of signals is passed.
The signals in the array are arranged in such a way, that they can be read
in the graphical representation of the object clockwisely.

In case there are both two in- and out-signals, this means:

pointer ‘ to signal
sp|0] left in-signal
spl[1] right in-signal

sp|2| | right out-signal
sp|3| left out-signal
The signal structure contains apart from other things:
structure-element ‘ description
s_n length of the signal vector
s_vec pointer to the signal vector
The signal vector is an array of samples of type t_sample.

perform-routine
t_int *my_perform_routine(t_int *w)

A pointer w to an array (of integer) is passed to the perform-routine that
is inserted into the DSP-tree by class_add.

In this array the pointers that are passed via dsp_add are stored. These
pointers have to be casted back to their original type.

The first pointer is stored at w[1] !!!

The perform-routine has to return a pointer to integer, that points di-
rectly behind the memory, where the object’s pointers are stored. This
means, that the return-argument equals the routine’s argument w plus the
number of used pointers (as defined in the second argument of dsp_add) plus
one.

37

C.4.1 CLASS MAINSIGNALIN
CLASS_MAINSIGNALIN(<class_name>, <class_data>, <f>);

The macro CLASS_MAINSIGNALIN declares, that the class will use signal-
inlets.

The first macro-argument is a pointer to the signal-class. The second ar-
gument is the type of the class-data space. The third argument is a (dummy-
Jfloating point-variable of the data space, that is needed to automatically
convert “float”-messages into signals if no signal is present at the signal-inlet.

No “float”-methods can be used for signal-inlets, that are created this way.

C.4.2 dsp add

void dsp_add(t_perfroutine f, int n, ...);

Adds the perform-routine £ to the DSP-tree. The perform-routine is called
at each DSP-cycle.
The second argumentn defines the number of following pointer-arguments
Which pointers to which data are passes is not limited. Generally, point-
ers to the data space of the object and to the signal-vectors are reasonable.
The length of the signal-vectors should also be passed to manipulate signals
effectively.
C.4.3 sys getsr

float sys_getsr(void);

Returns the sampler ate of the system.

C.5 functions: memory
C.5.1 getbytes

void *getbytes(size_t nbytes);

Reserves nbytes bytes and returns a pointer to the allocated memory.
C.5.2 copybytes

void *copybytes(void *src, size_t nbytes);

Copies nbytes bytes from *src into a newly allocated memory. The address
of this memory is returned.

38

C.5.3 freebytes

void freebytes(void *x, size_t nbytes);

Frees nbytes bytes at address *x.

C.6 functions: output
C.6.1 post

void post(char *fmt, ...);

Writes a C-string to the standard error (shell).
C.6.2 error
void error(char *fmt, ...);

Writes a C-string as an error-message to the standard error (shell).
The object that has output the error-message is marked and can be iden-
tified via the Pd-menu Find->Find last error.

39

	definitions and prerequisites
	classes, instances, objects
	internals, externals und libraries

	my first external: helloworld
	the interface to Pd
	a class and its data space
	method space
	generation of a new class
	constructor: instantiation of an object
	the code: helloworld

	a simple external: counter
	object-variables
	object-arguments
	constructor
	the counter method
	the code: counter

	a complex external: counter
	extended data space
	extension of the class
	construction of in- and outlets
	extended method space
	the code: counter

	a signal-external: pan
	variables of a signal class
	signal-classes
	construction of signal-inlets and -outlets
	DSP-methods
	perform-routine
	destructor
	the code: pan

	Pd's message-system
	atoms
	selectors

	Pd-types
	important functions in ``m_pd.h''
	functions: atoms
	SETFLOAT
	SETSYMBOL
	SETPOINTER
	atom_getfloat
	atom_getfloatarg
	atom_getint
	atom_getsymbol
	atom_gensym
	atom_string
	gensym

	functions: classes
	class_new
	class_addmethod
	class_addbang
	class_addfloat
	class_addsymbol
	class_addpointer
	class_addlist
	class_addanything
	class_addcreator
	class_sethelpsymbol
	pd_new

	functions: inlets and outlets
	inlet_new
	floatinlet_new
	symbolinlet_new
	pointerinlet_new
	outlet_new
	outlet_bang
	outlet_float
	outlet_symbol
	outlet_pointer
	outlet_list
	outlet_anything

	functions: DSP
	CLASS_MAINSIGNALIN
	dsp_add
	sys_getsr

	functions: memory
	getbytes
	copybytes
	freebytes

	functions: output
	post
	error

