
Pure Data
Intermediate course

Made with
love

for ATIAM

Ninon Devis
https://ninon-io.github.io/

❖ ❖

Table of Content 

Processing

01
Normalization
Ring Modulation
Amplitude Modulation
Frequency Modulation

Miscellaneous

02
Step Sequencer
Read files
Kick building

Externals

03
Given by P. Esling

Signal normalization & various synthesis methods

Processing
01

Normalizing the Signal

Obtaining the best dynamic range by fitting
the gain of the signal into certain ranges.

❖ Removing the DC Offset
❖ Normalizing the signal

What is DC Offset ?
Mean amplitude displacement from 0.

What is Normalization ?
Adjust the gain to peak at the maximum the
sound card allows before clipping: [-1, 1].

DC Offset = 0.5

How to normalize this signal ?

Don’t forget it’s a ~signal

Goal:

Two Step-process:

Normalizing the Signal
How to convert a sawtooth into a square?

{
Sawtooth

Square
❖ Introducing [expr] & [expr~]

The first inlet of [expr~] needs to
be of type ‘$v1’ for a signal

output = 1 if signal > 0.5
0 otherwise

Select ‘Polygon’ in the properties of the array

Modulation

Modulation is typical in synthesis as it enriches the character
of the sound and adds variance in timbre over time.

Multiplying audio signal

DC offset Mean amplitude around 0

Unipolar signal Bipolar signal

❖ Ring Modulation: multiplication of two bipolar signals by each others
➔ The frequency of the carrier signal is not present in the resulting sound.
❖ Amplitude Modulation: M is a unipolar modulator, typically between 0 and 1.
➔ The carrier frequency is preserved.

ring modulation output

amplitude modulation output

carrier signal

modulation signal

Difference between AM & RM
Carrier signal

Modulating signal

Output

Reminder: Example for AM

Ring Modulation

We multiply 2 bipolar signals by each other resulting:

We obtain two partials, one at the sum of the two original
frequencies and one at their difference.

❖ This shifts the component frequencies of a sound

Doctor Who
Cyberman voice

Stereo Patch
Stereo Oscillator

❖ This patch is stereo: how would you do this ?

❖ We want to visualize the output dB: which object?

Introducing the wireless connexion in Pd:
➔ Use a “sending” object and a “receive”

object as [s *] and [r *]

❖ To use the VU-meter we need [env~] which take
a signal and output its RMS amplitude in dB.

RM Synthesis Using one oscillator to modulate the gain of an other one

❖ According to your intuition, how would you
patch a RM?

❖ Let’s create a tremolo from this:
adding RM on both sides

That’s a LFO
(low-frequency

osc below 20 Hz) the amplitude of
C varies at the
frequency of M:
- Tremolo effect !

Amplitude Modulation

Varying the amplitude of a high frequency
signal, the carrier signal, as a function of a
lower frequency signal, the modulating
signal (commonly the one containing the
information to be transmitted).

Earliest method
to transmit audio
in radio broadcast

Carrier signal
high frequency

Modulating signal
low frequency

Output:

Definition:

The modulator M is unipolar, typically set between 0 and 1.

The carrier frequency is preserved and the sidebands generated are at half the amplitude of
the carrier amplitude.

Having the carrier frequency, it is then possible to
demodulate the signal in order to access the
information hold by the carrier using a pass band.

Amplitude Modulation

AM with complex Signal

Making Alien’s voice with amplitude modulation

Which object will we use to catch our voice ?
➔ [adc~]

Which oscillator would you choose ?

Frequency Modulation

The information contained in the modulating signal is
carried by varying the frequency of the carrier signal.
❖ Generally more robust than AM to transmit messages

(less noise).
❖ Instable compare to AM regarding synthesis.
❖ Gives “natural” (& beautiful) sounds.

Difference between
AM and FM

Stria - John Chowning (1977)

Mathematical intuition:
sinusoid modulated by another sinusoid.

With: carrier frequency, modulating
frequency and modulation index, then:

output:

Carrier signal

Modulating signal

Definition:

Frequency Modulation
Simple fm patch

You can add colors on your objects to
make your patch simpler to read

❖ For a very small amount of modulation:
vibrato

❖ For a greater amount of modulation:
glissando, or sweeping.

Step sequencer, sound files & Kicks

Miscellaneous
02

The Counter

MIDI-based tool that divides a measure of
music into a predetermined number of note
value called steps.
❖ We first need a counter !

How would you do it ? We want 16 steps
sequencer
❖ You will probably need [mod *] which

wrap number around given value.
❖ we want as output an increasing

number modulo 16.

Definition of step sequencer:

The Step Sequencer

We will trigger a bang step by step using [select *]
which compare numbers and send a bang if

matching to the message.

When you are happy with one of your step,
just copy paste 15 times.

You can change osc, add enveloppes,
configure your patch so that it plays

harmonically, plays samples instead of notes...

One step

Read Files

❖ No compression: .wav or .aiff
❖ Compression but no quality loss: .flac
❖ Compression and quality loss: .mp3

➔ Pd objects depending on the format
[readsf~] for .wav

other formats not included in Pd Vanilla

➔

❖ Don’t use space or special characters for
the name of your sound files

❖ Try to put your music in the same folder
as your patch

How would
you loop

the song ?Look for
file/directory

[read[and [soundfiler] to “edit” the song

Seek help

Reminder about files formats

Kick
General Approach

Square Osc

Volume Env

Pitch Env

Resonant Low pass Filter Sine OscNoise

❖ The volume envelope permits
to have “note” and not
continuous sound.

❖ Adding a sine driven by the
pitch envelope

❖ Percussive reverb with
a white noise

❖ Square wave oscillator whose
pitch is controlled by a pitch
envelope.

❖ The cutoff freq of the lowpass
is also driven by the pitch
envelope

n+p

Phasor and Envelope

First Step Achievement

Square Osc

Volume Env

Pitch Env

VCF :

adding a resonant low-pass filter,
 With the cutoff driven by our pitch enveloppe.
❖ Which object do we need ?

Where will we plug our pitch env ?

First, let’s add a pitch scale, then the vcf with a filter scale.

Next :

Resonant Low Pass Filter & Scales

Square Osc

Volume Env

Pitch Env

Resonant Lowpass Filter

Noise & Sine

Volume Env

Pitch Env

Resonant Low Pass Sine Osc

Noise Square Osc

Clean it Up
How to simply subpatch:
❖ put your inlets and outlets appropriately
❖ cut your boxes with them
❖ plug respectfully with the order

Add presets

❖ First add to all the concern sliders a label
in “receive symbol”

❖ Then write a message beginning with ;
followed by all the label you want to drive

Messages boxes to add presets:

Create your own PD boxes

Externals
03

● So what is going on inside a given box ? So mysterious...
● We can even go deeper (and deeper … hmm) in Pure Data objects

○ Possibility to define your own boxes :-) Oh woah !
○ The overall system defines PD externals

● PD provides a set of includes and specs
● Simple SDK with a (relatively) clear notation
● Here we will code in C (exciting hmm) but still talk about objects

○ Entirely dynamic linking / Runtime class loading
○ Everything defined as a C struct (erf)
○ Then simply a set of functions.

Externals love

Externals love

This object reference is mandatory (cf. later)

Need to manually define inlets and outlets

All objects have a default left-most hot inlet

Here we want to code a simple object

=> bang prints time

1. We need to include the PD header definitions

2. Then define the class of our object

Externals love

3 minimal functions to code

1. What happens at runtime (once)

2. Define object creation (add box)

3. One method per message
(here we code what happens when a bang is received)

This object reference is mandatory (cf. later)

Need to manually define inlets and outlets

1. We need to include the PD header definitions

2. Then define the class of our object

Externals love
Reminder of the data structure 1. Runtime function (*_setup)

Class creation method class_new

Name of the object

Method to call for each new object

Size / malloc options

Add the behavior for bang with class_addbang

Later we will also use class_addmethod (messages)

● Global explanation of the object

● Explains its name, types and functions

● Mimics a class system

Externals love
2. Box creation function (*_new)

Instantiation method pd_new

Returned object (void *)

Create the (symbol) outlet and store in x_obj !

Return the created object

Reminder of the data structure

● Function called when we create a box

● Similar to an object constructor

● Explain all initialization stuff

Externals love
3. Message handling (*_bang)

Specific object instance

Write information to a specific outlet

Need to write symbols to a

given symbol table

Reminder of the data structure

● Function called when we receive a message

● Here specific example of a bang

● Beware of the processing time !

Just get the current time

Externals love

1. Our own perform function

2. The DSP call (block_size dependent)

3. Memory liberation

Similar class setup method

Need to add the DSP function

DSP call fills the rightful buffers

What happens for signal stuff ?

